
Diamond matrix powers kernels
Emil Vatai

∗

vatai@inf.elte.hu

emil.vatai@gmail.com

The University of Tokyo

Graduate School of Information

Science and Technology

Tokyo, Japan

ELTE Eötvös Loránd University

Faculty of Informatics

Budapest, Hungary

Utsav Singhal

utsavsinghal5@gmail.com

The University of Tokyo

Graduate School of Information

Science and Technology

Tokyo, Japan

Indian Institute of Technology, Delhi

New Delhi, India

Reiji Suda

reiji@is.s.u-tokyo.ac.jp

The University of Tokyo

Graduate School of Information

Science and Technology

Tokyo, Japan

ABSTRACT
Matrix powers kernel calculates the vectorsAkv , for k = 1, 2, . . . ,m
and they are the heart of various scienti�c computations, including

communication avoiding iterative solvers. In this paper we propose

diamond matrix powers kernel - DMPK, which has the purpose

to apply the “diamond tiling” stencil algorithm to general matri-

ces. It can also be considered as an extension of the PA1 and PA2

algorithms, introduced by Demmel et al. Our approach enables

us to control the balance between the amount of communication

avoidance and redundant computation inherently present in com-

munication avoiding algorithms. We present a proof of concept

implementation of the algorithm using MPI routines. The experi-

ments we performed show that the control of the amount of compu-

tation and communication is achievable, and with more thorough

optimisations, DMPK is a promising alternative to existing MPK

approaches.

ACM Reference Format:
Emil Vatai, Utsav Singhal, and Reiji Suda. 2020. Diamond matrix powers

kernels. In International Conference on High Performance Computing in Asia-
Paci�c Region (HPCAsia2020), January 15–17, 2020, Fukuoka, Japan. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3368474.3368494

1 INTRODUCTION
Iterative solvers are the de-facto standard to solve sparse linear

equations. However, for large linear systems, which are meant to

be solved on supercomputers, the performance is hampered by

the inter-process communication. To tackle that problem, various

modi�cations of Krylov subspace methods have been proposed

[7]. Among them, communication-avoiding algorithms [6, 9, 11]

employ aggressive techniques to reduce communication, such as s-
step methods, Matrix Powers Kernel (MPK), Tall-Skinny QR (TSQR)

and block Gram-Schmidt. In this paper, we focus on MPK, which

∗
Emil Vatai is an International Research Fellow of Japan Society for the Promotion of

Science (Postdoctoral Fellowships for Research in Japan (Standard)). This work was

supported by JSPS Grant-in-Aid for JSPS Research Fellow Grant Number JP18F18786.

ACMacknowledges that this contributionwas authored or co-authored by an employee,

contractor or a�liate of a national government. As such, the Government retains a

nonexclusive, royalty-free right to publish or reproduce this article, or to allow others

to do so, for Government purposes only.

HPCAsia2020, January 15–17, 2020, Fukuoka, Japan
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7236-7/20/01. . . $15.00

https://doi.org/10.1145/3368474.3368494

is also called AkX (for Akx) in some literature [2], and is actively

used in current research e.g. [1].

MPK calculates them vectors obtained by multiplyingm times a

vectorv by the (sparse) matrixA, i.e. the vectors:v(0),v(1), . . . ,v(m)

wherev(i) = Aiv (with the initial vectorv = v(0)) as described in Al-
gorithm 1. The obvious disadvantage of this naive implementation,

is the requirement for communication in each iteration. Demmel et

Algorithm 1 MPK(v,A,m)

v(0) ← v
for k = 1 tom do
v(k) ← Av(k−1)

al. [6] proposes several variations of MPK. Here we only review two

of them: PA1 and PA2. In PA1, each process computes a disjoint sub-

set of v(m). Before that, the process computes the subset of v(m−1)

that is referred to in the computation ofv(m) = Av(m−1). The subset

of v(m−1) computed here is nothing but the process’s domain plus

its halo region. In a conventional method, the elements in the halo

region are computed by the processes they are assigned to, but in

PA1, they are computed in duplication by multiple processors. Sim-

ilar discussion is done from v(m−2) to v(1). The consequence is that

the process computes all the elements of v(1), v(2), . . . , v(m−1) that
have dependency to one or more elements in the �nally computed

subset of v(m). The required part of v(0) is sent to the processor

before the computations (but some overlap of computation and

communication is possible). In the PA1, communication is done

only once at the beginning, and a signi�cant part of computations

is done in duplication by two or more processors. PA2 is a modi�ca-

tion of PA1. The di�erence is that, each process �rst does as much

local computations as possible without communication. The partial
results, i.e. the vertices computed (locally) up to some level k (where

k < m) are sent to the processes that need them, so a part of redun-

dant computation is removed. However, the amount of duplicated

computation is still signi�cant. In our algorithm, the duplicated

computations is reduced, but multiple steps of communication are

needed. Thus ours is not absolutely better than PA1 and PA2, but

we provide more freedom of trade-o� to optimise performance.

MPK is closely related to the temporal blocking technique in

stencil computations [14]. PA1 corresponds to the overlapped tiling.

In stencil computations, there are several methods, such as the

https://doi.org/10.1145/3368474.3368494
https://doi.org/10.1145/3368474.3368494

HPCAsia2020, January 15–17, 2020, Fukuoka, Japan Emil Vatai, Utsav Singhal, and Reiji Suda

diamond tiling, to reduce or totally remove duplicated computations

in temporal blocking [3]. However, as far as the authors know,

there is no known parallel MPK algorithm for general matrices

except PA1 and PA2 (and the one presented here). In this paper, we

propose an MPK that avoids most of the duplicated computations,

corresponding to the diamond tiling in stencil computations. This

work is an extension of our earlier work reported in [13].

The rest of the paper is organised as follows. Section 2 describes

the problem and some previous research done to address it. In Sec-

tion 3 we present our idea and give an overview of our algorithm.

The details of our implementation are provided in Section 4. We de-

scribe the experiments performed in Section 5, and we present some

results, how our algorithm e�ects the amount of communication

and redundant computation. In Section 6 we state our conclusions

and in Section 7 we describe our future work.

2 COMMUNICATION IN MPK
An (m dimensional) Krylov subspace, de�ned by the matrix A and

vector v is:

Km (v,A) = span{v,Av,A2v, . . . ,Am−1v}

The basic principle behind Krylov subspace projection methods

for solving sparse linear systems is (in each iteration) to �nd the

best approximation of the exact solution in a Krylov subspace, and

then to expand the Krylov subspace [12]. Usually this is a one

dimensional expansion, which requires one matrix multiplication:

Amv ← A · (Am−1v) i.e. vnew ← A · v
old

. This is followed by an

inner product operation, which demands communication, because

all elements of the vector are needed. To avoid communication

in such algorithms, various modi�cations have been developed,

which expand the Krylov subspace bym > 1 dimensions (see [5]).

These methods requirem matrix multiplications, i.e. the vectors

Av,A2v, . . . ,Amv need to be calculated. Hence the procedure to

calculate these vectors is called matrix powers kernel.

In this paper, A ∈ Rn×n is a general (sparse) matrix (stored in

compressed sparse row format) with the component ai , j at the i-th
row and j-th column of A and v ∈ Rn a (dense) column vector with

vi as its i-th component (for 0 < n ∈ N). Our goal is to calculate the
m vectors Av,A2v, . . . ,Amv , wherem denotes a positive integer

(usually m > 1). For reasons stated later, we should assume the

pattern (i.e. position of nonzero elements) of A is symmetric. This

condition is easy to satisfy by storing zeros in the missing position.

2.1 Graph representation
To better understand the data dependency in MPK, the problem

should be reformulated in graph theoretical terms.

Adjacency matrices are a conventional way matrices and graphs

are assigned to each other. This correspondence implies a natural

labelling of the vertices of the graph with the components of a

vector v of length n where n is the number of vertices of the graph.

De�nition 2.1 (G graph). The graph G = G(A,v) associated with

the vectorv and matrixA, has n vertices and e edges, where e is the
number of nonzero elements in A. The i-th vertex of G is labelled

with the value of vi , and there is a directed edge from vj to vi if
and only if ai , j , 0 , and this edge is labelled with ai , j .

v1 v2 v3

v4 v5 v6

v7 v8 v9

(a)

v
(0)

1

v
(0)

2

v
(0)

3

v
(0)

4

v
(0)

5

v
(0)

6

v
(0)

7

v
(0)

8

v
(0)

9

k = 0

v
(1)

1

v
(1)

2

v
(1)

3

v
(1)

4

v
(1)

5

v
(1)

6

v
(1)

7

v
(1)

8

v
(1)

9

k = 1

v
(2)

1

v
(2)

2

v
(2)

3

v
(2)

4

v
(2)

5

v
(2)

6

v
(2)

7

v
(2)

8

v
(2)

9

k = 2

v
(3)

1

v
(3)

2

v
(3)

3

v
(3)

4

v
(3)

5

v
(3)

6

v
(3)

7

v
(3)

8

v
(3)

9

k = 3

(b)

Figure 1: G and Gm graph of a 3 × 3 mesh

It can be useful to treat vi both as the i-th component of the

vector v , and the corresponding vertex in G. In this context, calcu-

lating a vertex vi , means calculating the new label of that vertex,

that is the value of vi in the vector v .

This representation needs a simple extension to allow the visu-

alisation of the �ow of information in MPK:m new sets of vertices

are needed (because each matrix multiplication by A produces a

new vector), and the edges should be pointing to vertices which

are calculated, from vertices which are needed to calculate them.

De�nition 2.2 (Gm graph). The graph Gm = Gm (v,A), consists

of (m + 1) × n vertices labelled with v
(k)
i (i.e. the i-th component

of the vector v(k) = Akv , for 1 ≤ i ≤ n and 0 ≤ k ≤ m) and e ×m

number of edges, each labelled with ai , j and directed from v
(k−1)
j

to v
(k)
i for ai , j , 0 (for each 1 ≤ k ≤ m). In this case the vertex

v
(k−1)
j is the parent of v

(k)
i .

The vertices of v(k) in Gm are the k-th level of MPK, and the

graph should be visualised with the vertices of v(0) at the bottom,

and the vertices of v(k) for k > 0 as identical copies (with di�erent

vertex labels) stacked on each other. In this arrangement, the edges

on top of each other have the same labels. In the matrix vector

multiplication

v
(k)
i =

n∑
j=1

ai , jv
(k−1)
j (1)

we can see that in the sum the terms with ai , j = 0 can be omitted,

so to calculatev
(k)
i , we need to sum up all the vertices with an edge

pointing to v
(k)
i from level k − 1 and multiply them with the edge

label. In the adjacency matrix G, the sum in (1) visits all the neigh-

bours of the calculated elementv
(k)
i . To calculateAv,A2v, . . . ,Amv ,

MPK needs to “reach” the vertices at the top level. As an example,

Figure 1a shows a 3 × 3 2D mesh and how the vector v of length

n = 9 is associated to the vertices, while Figure 1b shows the data

dependency of MPK withm = 3 (the edges are directed from lower

levels i.e. lower values of k to higher levels with higher values of

k). The directed graph Gm represents the �ow of information in

MPK. The edges represent a �oating point multiplication and an

addition.G can be useful for a simpler discussion of our algorithm.

2.2 Parallel computation and communication
in MPK

The basic approach to communication avoiding MPK roughly fol-

lows the classical divide and conquer scheme: the vertices of G are

Diamond matrix powers kernels HPCAsia2020, January 15–17, 2020, Fukuoka, Japan

partitioned and each process is assign one partition to compute.

Henceforth, Π will denote a partitioning of the set {1, 2, . . . ,n}, i.e.
∪Π = {1, 2, . . . ,n} and for each p,q ∈ Π, if p , q then p∩q = ∅. For

each partition q ∈ Π, if i ∈ q we say v
(k)
i belongs to partition q and

sometimes we may abuse notation and write v
(k)
i ∈ q or vi ∈ q (for

each k). This implies a partitioning ofG andGm . If P is the number

of available computation nodes, then usually |Π | = P is chosen, and

each partition is assigned a process number between 1 and P , and
in this context, partitions and processes are interchangeable.

Given a partitioning Π, two concepts will be useful: the set of

required vertices and the set of locally computable vertices. Let

d(i, j) denote the distance between vertices vi and vj in G.

De�nition 2.3 (Required vertices). Given a partition q ∈ Π andm,

the set of required vertices (to compute MPK to levelm) is de�ned

as

R(q,m) = {i : ∃j ∈ q such that d(i, j) ≤ m}

This is the set of indices of the input vector v(0) which need to

be sent the partition q to compute the vertices up to levelm if no

partial results are computed.

De�nition 2.4 (Halo of a partition). Given a partition q ∈ Π and

m, the halo (or skirt) of the partition (to compute MPK to levelm) is

H (q,m) = {(i,k) : ∃j ∈ q s.t. d(i, j) ≤ m ∧ k > 0}

These are the (i,k) pairs, such that v
(k)
i elements are calculated

when the vertices in q are calculated up to levelm (again assuming

no partial results computed). PA1 transfers R(q,m) to each parti-

tion q and calculates elements corresponding to H (q,m) \ (q × N)
redundantly.

De�nition 2.5 (Locally computable vertices). Given a partition

q ∈ Π the set of locally computable vertices is de�ned as

L(q) = {(i,k) : i ∈ q ∧ d(i, j) ≤ k =⇒ j ∈ q is true for ∀j}

These are the (i,k) pairs, such that v
(k)
i elements can be calcu-

lated from v
(0)

j elements where j ∈ q.

Given a set X ⊂ N × N, let `i (X) be max{k : (i,k) ∈ X } if
there is a k such that (i,k) ∈ X or 0 otherwise. Applying ` to

L(q), we obtain the levels of vertices reached, i.e. if `i (L(q)) = k

then v
(k ′)
i is computed/computable in q for k ′ ≤ k . The levels of

all partitions can be considered simultaneously, and we can use a

global ` sequence such that `i =
∑
q∈Π `i (L(q)) which is the same

as `i (∪q∈ΠL(q)), given a partitioning Π, every vertex v
(k)
i can be

calculated, for k ≤ `i using only local vertices.

Now we can de�ne the halo and required vertices with partial

results computed.

De�nition 2.6 (Halo with partial results). Given a partition q ∈ Π,
a sequence ` (0 ≤ `i ≤ m for 1 ≤ i ≤ n) and the integerm > 1, the

halo (or skirt) of the partition (to compute MPK to levelm, with

partial results speci�ed by `) is the set

H (q,m, `) = {(i,k) : ∃j ∈ q s.t. d(i, j)−`j ≤ m∧`j < k ≤ m−d(i, j)}

De�nition 2.7 (Required vertices with partial results). Given a

partition q ∈ Π, a sequence ` (0 ≤ `i ≤ m for 1 ≤ i ≤ n) and the

integerm > 1, the required vertices partition to compute MPK to

levelm, with partial results speci�ed by ` is the set

R(q,m, `) = {(i,k) : ∃(j,k + 1) ∈ H (q,m, `) s.t. k ≤ `i ∧ d(i, j) ≤ 1}

These are extensions of De�nition 2.4 and De�nition 2.3 for the

case when we have calculated vertices v
(k)
i for k ≤ `i . It should be

noted, that De�nition 2.3 of required vertices is a subset of indices,

while De�nition 2.7 is a set (i,k) pairs, since the same vertex at

di�erent level might be required, but the idea of an extension still

holds, by adding a zero component to the elements of R(q,m) i.e.
to take (i, 0) instead of i when i ∈ R(q,m).

The PA2 algorithm, given a partitioning Π, calculates the ver-
tices up to level `i = `i (L(q)) in the process/partition q using only

vertices available in that partition, and then computes the vertices

de�ned byH (q,m, `) by obtaining the vertices of R(q,m, `) from the

other partitions. Both PA1 and PA2 have redundant computation

which we tend to reduce in our approach, described in the following

section.

3 DIAMOND MATRIX POWERS KERNEL
The PA2 algorithm can be considered as an approximation of the

diamond tiling algorithm for general matrices, obtained fromPA1 by

extending the de�nition of halo and required vertices to consider

partial results, i.e. vertices which can be computed up to some

intermediate level k (where k < m).

Following this idea, the two ingredients needed by diamond

tiling for general matrices, i.e. our algorithm, are:

(1) the extension of locally computable vertices to include partial

results, and

(2) the moving index domains of the diamond tiling scheme

(reassignment of indices to di�erent processes at di�erent

levels/phases of the computation).

De�nition 3.1 (Locally computable vertices with partial results).
Given a partition q ∈ Π, a sequence ` (0 ≤ `i ≤ m for 1 ≤ i ≤ n)
the set of locally computable vertices (with partial results speci�ed

by `) is de�ned as

L(q, `) = {(i,k) : i ∈ q ∧ d(i, j) − `j ≤ k =⇒ j ∈ q is true for ∀j}

Similarly to the diamond tiling algorithm, DMPK also runs in

phases: after each phase diamond tiling moves the index domains.

This can be very e�cient for stencil computations because of the

regular access pattern, but for general matrices, this movement of

the index domain corresponds to the repartitioning of the vertices.

With the additional restriction, to make the �rst and last partition-

ing the same, the PA1 and PA2 are the special cases of DMPK with

zero or one startup phase (s = 0 or 1) and the �nal (halo/skirt)

phase. A rough description of DMPK is given in Algorithm 2.

Line 8 and 4 deserve some explanation. After calculating L(q, `)
the vertices in q (for each partition q) are further advanced, to

higher levels, and after this operation ` should be updated to these

new, higher levels.

Generating a new partitioning corresponds to moving the index

domains in stencil computations, and deserves some explanation.

Phases and moving domains come naturally to stencil computations

because of their regular access pattern, while it is not so clear-cut for

general matrices. Diamond tiling can �t the diamond tiles naturally

HPCAsia2020, January 15–17, 2020, Fukuoka, Japan Emil Vatai, Utsav Singhal, and Reiji Suda

Algorithm 2 DMPK(v,A,m, s)

1: v(0) ← v
2: `i ← 0 (for all i)
3: for r = 0 to s − 1 do
4: Generate a new Πr partitioning

5: Perform communication

6: for q ∈ Πr do
7: Calculate vertices in L(q, `i)
8: Update `i
9: Perform communication

10: for q ∈ Π0 do
11: Calculate H (Π0,m, `)

Figure 2: Iterations resembling stacked diamonds

onto each other, but this is not possible for general matrices. Figure

2 shows these “diamond tiles” of a tridiagonal matrix and what

we call phases of the algorithm. The vertices at di�erent levels are

arranged above each other. The initial phase is red (these vertices

are calculated when r = 0 in Algorithm 2), followed by blue (r = 1),

then green (r = 2) and �nally purple (the �nal halo phase). The

“moving index domains” are de�ned by the left and right sides of the

diamond shapes: basically in this example of a tridiagonal matrix,

the domain alternates between two positions, shifted by half on

diamonds width.

A di�erent approach needs to be taken, to see what needs to be

done for general matrices. The initial phase, when the algorithm

calculates only “tops” of the diamonds i.e. the red triangles, is sim-

ply calculating the vertices in L(q) for each partition q. For a 2D
mesh, the L(q) sets (for certain partitioning) look like pyramids and

if the underlying graph is more complicated one could describe

L(q) as some kind a hill or mountain. In subsequent phases of the

diamond tiling algorithm, diamonds are �tted between these trian-

gles. By dividing the diamonds (again) into upper and lower halves,

one could argue that the lower halves �ll the space between the

triangles of the previous phase, while the upper halves make a new

relief of hills, similar to the one obtained in the previous phase,

only moved to a di�erent position. Translating this into case of

general matrices, valleys between the hills need to be �lled, and

then new hills are to be build on this �at surface. The basis of these

new hills correspond to the partitions, and now the question is

how to determine these partitions. Following the diamond tiling

scheme, the repartitioning on line 4 of Algorithm 2 should choose

the new partitions trying to satisfy the following two conditions:

the boundaries of new partitions are at the tallest points of the

Figure 3: Hills and valleys

previous phase and the centre of the partitions is over the centre of

valleys. This can get a bit complicated: Figure 3 shows the levels

of vertices our algorithm reached after 2 phases on a 60 × 60 �ve

point 2D mesh with 8 partitions. Each pixel corresponds to a vertex

in the 2D mesh. Brighter colours represent higher, darker colours

represent lower levels. The details of the implementation including

the details of repartitioning are discussed in Section 4.

4 DETAILS
Algorithm 2 shows a general idea about what are the things DMPK

needs to do. Our assumption is that DMPK will be used in each

iteration of a larger application, and will e�ciently calculate the

vectors v,A1v, . . . ,AMv , for someM �m, in chunks ofm by exe-

cuting DMPKM/m times. The generation of a new partition (line

4 in Algorithm 2) and determining how to perform the communi-

cation (line 5 in Algorithm 2) are computationally very expensive,

and would not lead to an e�cient implementation. For this reason,

DMPK in our implementation performed in several stages. This

approach enables us to determine the communication patterns in

the �rst stages, which can be considered as preprocessing and then

execute these communication patterns with the actual data, by only

running the �nal execution stage M/m times in the application.

Separating the execution into a preprocessing and execution stage

illuminates the fact that numerical data is needed only in the �nal,

execution stage, not in the communication patter determining stage.

This has the hidden bene�t, that if there are multiple matrices, with

di�erent (nonzero) values with in the same positions (with the same

structure), we can use the previously calculated communication

patterns. Also, we managed to implement the the preprocessing in

such a way, that it is basically identical to a regular SpMV program,

only the content of the CSR arrays (ptr, col and val) are di�erent.
The prepartition stage is divided into further substages. The

�rst stage of preprocessing calculates the levels and determines the

repartitioning. The second stage of preprocessing determines the

communication patterns. The �nal stage of DMPK is the execution

Diamond matrix powers kernels HPCAsia2020, January 15–17, 2020, Fukuoka, Japan

of the communication using the previously computed communica-

tion patterns and numerical data i.e. the input vectorv and (nonzero)

values of the matrix A.

4.1 Repartitioning the graph
The input for the �rst preprocessing stage, which calculates the

levels and the partitions for each phase consists of the n, which
is the size of the vector (and the dimensions of the A matrix),m
which is the target level the algorithm should reach, and the num-

ber of phases denoted by s . The output consists of a s di�erent

partitionings Πr (or just a single partitioning Π0 if s = 0), `(r) for

0 ≤ r ≤ s − 1, and the halo data. The halo data has no partition

because of the restriction that the �rst and the last partitioning

must be the same. Instead of one ` sequence of length n, the halo
is represented as |Π0 | number of sequences. For each q ∈ Π0 the

sequence σ (s ,q) (of length n) represents the halo of q, by storing

the values σ
(s ,q)
i = m − `

(s−1)
i , that is the number of levels each

vertex needs to advance to reach the �nal levelm (within q).
Metis [10] is used for partitioning the graph G . Metis is an open

source, fast, high quality partitioner library for irregular graphs.

For the �rst partitioning, the only objective is to �nd approximately

equal size partitions, while in subsequent phases (for r > 0), the

ability to �nd partitions with minimal edgecuts is also used. As

stated in the previous section, the objectives for phases when r > 0,

is to have the edges of the new partitions at vertices with higher

levels (top of hills) and the centre of the partitions at vertices with

lower levels in the previous phase. Since the minimal edge cut

functionality of the Metis library is to be used, the level information

from vertex labels needs to be converted into edge labels. For this

purpose (2) is used:

wi , j =
1

`i + `j − 2min(`) + 1
(2)

The term 2min(`) removes the levels obtained from previous

phaes, i.e. emphasises only the relative di�erences between levels. If

both levels of vertex i and j , `i and `j are large, then theweight of the
edge between them,wi , j is going to be small. This weight increases

the possibility of the edge to be on the boundary of partitions, which

corresponds to the objective of having partition borders where the

values from `i are large. In the opposite case, when both `i and

`j are small,wi , j will be large, and this will reduce the chance of

vi and vj ending up in di�erent partitions, which is objective of

having the interior of partitions where the levels of the previous

phase are low.

The following technical details are worth mentioning. Metis uses

undirected graphs, that is the reason for the requirement, mentioned

at the beginning of Section 2, that the pattern of the matrixA should

be symmetric, since this corresponds to a undirected graph. Also,

to use the minimal edgecut functionality of Metis, the edge weights

wi , j need to be integers, so wi , j multiplied by a large integer is

stored in the implementation.

This preprocessing stage is separate from the next because this

stage is executed sequentially, while the next preprocessing stage,

and the �nal execution stage are executed for each partition in

parallel.

4.2 Determining communication patterns
The input for the second preprocessing stage, which determines

the communication patters for the execution stage consists of the

same input as the �rst stage (n,m, s and the patter of A) in addition

to the output of the previous phase (Πr , `
(r)

and σ (s ,q) for 0 ≤
r ≤ s − 1). The output consists of bu�ers (or arrays) which can be

categorised into two major categories: some describe computation

and some communication. There are two kinds of communication

bu�ers: send and receive bu�ers. Asmentioned earlier the algorithm

described here is executed for each partitionq ∈ Π(r) for each phase
r .

The �rst step towards solving the issue of orchestrating the

communication is the have all v
(k)
i elements in a single array, with

a single index. This can be done trivially, by treating the n long

vectors atm + 1 levels (including level 0) as a single (m + 1) × n
matrix, and store the elements in a single array v̂ in the row-major

order. This way every element v
(k)
i can be identi�ed with a single

index ξ = nk + i , i.e. v̂ξ = v
(k)
i .

A single phase of DMPK can be treated as a single program

with input, intermediate results and output. The input is the data

received from the previous phase, the intermediate results, i.e. the

work it has to perform is L(q, `(r)) for q ∈ Πr , and the output is the

data needed by other processes/partitions in the following phase.

4.2.1 Bu�ers describing computation. Assuming communication is

complete, and the received data (the “input” of the phase) is avail-

able, the task of process q is to calculate the vertices in L(q, `(r)). A

vertexv
(k)
i is calculated from the matrix values ai ,∗ and fromv

(k−1)
j

such that vertex j is adjacent to vertex i inG . This is the same opera-

tion as SpMV, with this slight di�erence, that some of the calculated

values v
(k)
i = v̂ξ can become the input of another v

(k+1)
i′ = v̂ξ ′

element of L(q, `(r)). Therefore, the �nal “execution” stage of the
implementation runs Algorithm 3, which is essentially a regular

(sequential) SpMV, with the parameters modi�ed as explained later

(for now they are just pre�xed with an extra ‘m’ character). For sim-

plicity, we will only consider this case, when the both the input and

the output are in the same bu�er. The reason why this assumption

is possible will be discussed in the next section.

Algorithm 3 SpMV(v,mptr ,mcol,mval)

1: for i = 0 to . . . do
2: s ← 0

3: for t =mptr [i] tomptr [i + 1]) do
4: s ←mval[t] ×v[mcol[t]]
5: vi ← s

The contents of these modi�ed parameters is basically obtain

by simulating the required computations and recording the proper

values. For each partition q and phase r the program iterates (se-

quentially) trough all ξ = nk + i values, and if (i,k) ∈ L(q, `(r)), that

is if `
(r−1)
i < k ≤ `

(r)
i , then records ξ in an index-bu�er µ = µ(q, r).

In other words, if v
(k)
i is the vertex which should be calculated in

step ν of phase r in partition q, the µν (q, r) = ξ = nk + i .

HPCAsia2020, January 15–17, 2020, Fukuoka, Japan Emil Vatai, Utsav Singhal, and Reiji Suda

The index-bu�er µ is not used directly, but enables the construc-

tion of the parametersmptr ,mcol ,mval used by Algorithm 3. The

original (ptr , col , val) and modi�ed (mptr ,mcol ,mval) parameters

have similar purpose.

The originalptr is ann+1 long array which satis�es the property
that ptr [i + 1] − ptr [i] is the number of vertices adjacent to vi inG .
The contents ofmptr is modi�ed accordingly. The length ofmptr is
|µ(q, r)| + 1 and if µν (q, r) = ξ = nk + i thenmptr [ξ + 1] −mptr [ξ]
is equal to ptr [i + 1] − ptr [i].

The length of col and val equals to the last entry in the ptr
array. The modi�edmcol andmval have length equal to the last

entry ofmptr . For T ∈ [ptr [i],ptr [i + 1]), col[T] = j is the index
of the t-th neighbour of vi where t = T − ptr [i] and val[T] is the
element ai , j , from the i-th row and j-th column of A. Similarly, for

τ ∈ [mptr [ξ],mptr [ξ+1])where ξ = nk+i , using previous notation,
ifmcol[τ] = ν ′, then µν ′(q, r) = ξ ′ = n(k − 1) + j where j is index
of the t ′-th neighbour of i andmval[τ] = ai , j for t

′ = τ −mptr [ξ].
The values ofmcol are �lled, using a lookup table, which for each

possible index ξ stores the corresponding ν index such that µν = ξ .
Unlike the original val array, mval is most likely to have du-

plicates, not just in the sense of two di�erent entries having the

same value (that is possible within the case of the originalval when
two di�erent elements of A are the equal), but in the sense that

the same ai , j element is stored more thane once inmval . This can
be remedied at the price of introducing another indirection: an

arraymidx which stores indices of the original val array, instead
of storing the values themselves. The modi�cation to Algorithm 3

is trivial: val[midx[t]] should be used instead ofmval[t] in line 4.

It should be noted, that at this point are the values of the matrix

used for the �rst time. This can be postponed by a modi�cation sim-

ilar to the one described above which uses themidx array. This has

the advantage, that if there are multiple matrices A(t), which have

di�erent values but the same pattern/structure, than by reading the

doing the preprocessing stages for only one matrix, with themidx ,
the val arrays o� the other matrices can be easily swapped out.

4.2.2 Bu�ers describing communication. The communication is

implemented as an MPI_Alltoallv call. This approach is not very

e�cient, but since this implementation is only a proof of concept, it

aims to ensure that all the information that is required to describe

the communication is gathered and available. The most important

parameters
1
of a the MPI_Alltoallv routine are:

send (receive) count arrays with length equal to the number

of processes (P = |Π |), which at the q-th position stores

the number of elements sent to (received from) the q-th
process/partition.

send (receive) bu�ers a pointer to an allocated memory re-

gion to (from) where the current sends sends (receives) the

the data.

send (receive) displacements array of length P = |Pi |, which
at the i-th position speci�es the o�set from the send (receive)

bu�er, from (to) where the i-th process can send (receive)

data.

1
For the detailed description consult [8].

Smiliar bu�ers are computed in DMPK as well. This is the informa-

tion which a full description of what data (including the amount)

should be sent from which to which process.

The send and receive information is loosely speaking the same.

The global communication (which includes both at the same time

the send and the receive information) could be summarised in a

P × P communication table, where the number in the q-th row and

p-th column would tell how many elements are sent from process

q to p. The “send” related information is stored in the rows and

the “receive” related information is stored in the columns of this

communication table.

In the discussion of the computation bu�ers above, the assump-

tion was made, that only the bu�ers which contained only the

intermediate results of a phase are used both as input and output.

However this implies no input data for the intermediate results

which would be meaningless. This paradox can easily be resolved

by having both the receive bu�ers and the computation bu�ers in

one big bu�er. For convenience, in the implementation, µ = µ(q)
for each partition q is a single array, which starts which the parts

of v which belongs to q would be the read bu�er for phase r = 0,

continues with the computation bu�er and further continues to

alternate between the read and computation bu�ers for each phase.

Alternating arrangement of read and computation bu�ers is

possible because it is irrelevant for the receiver what data comes

from which partition. However this is not the case for the send

bu�ers, because the sender needs to know what to send where, and

this is the main di�erence between the send and receive bu�ers.

The same data might need to be sent to multiple partition and

this implies the need to have multiple copies of the same data in

the send bu�er. For this reason, in the implementation the send

bu�ers is stored in a di�erent part of memory that the receive and

computation bu�ers.

The communication consists of two steps: copy the required

data from the computation bu�ers to the send bu�er, and call

MPI_Alltoallv. To be able to decide which elements need to be

sent, besides the, above mentioned MPI_Alltoallv parameters

which describe the amount and the destination of data, one more �ll
bu�er is needed, to describe �ll the payload, i.e. the MPI_Alltoallv
parameter send bu�er from the computation bu�ers. The same

lookup table is used to create this �ll bu�er, which was used to

createmcol . If the program determines that the vertex needed by an

entry in the computation bu�er if in another partition, an index ν is

added to the �ll bu�er, such that µν = ξ if v̂ξ was the needed vertex.

This way, for each partition and each phase, the �ll bu�er contains

the indices of the elements in computation bu�er, which need to be

copied to the send bu�er when they have been calculated. This

is analogous to themcol bu�er storing the information on how to

utilise the information in the read and computation bu�er.

4.2.3 Optimising communication. There is an import possibility

for optimisation at this point. Metis, partitions G by assigning an

integer from 0 to P − 1 to each vertex vi . The structure of the

partitioning is optimal, however there is a possibility to reduce

communication, by choosing di�erent labels for the partitions. The

optimisation simply consists of going trough all the permutations π :

{0, . . . , P−1} → {0, . . . P−1}, and selecting the one, which results it
the communication table (which includes the “self-communication”,

Diamond matrix powers kernels HPCAsia2020, January 15–17, 2020, Fukuoka, Japan

i.e. the number of vertices from the previous phase used by the same

process) with maximal trace. The trace being maximal, is equivalent

to most of the data having the same source and destination partition,

i.e. most of the data is kept on the partition.

4.3 Execution: performing the calculations
The input of the execution phase is the input vectorv and the output

of previous stage: the communication and computation bu�ers. The

output of the execution stage should be the �nal output of DMPK:

the vectors v,Av, . . .Amv . As mentioned earlier the algorithm de-

scribed here is executed for each partition q ∈ Π(r) for each phase r .
The assumption is that DMPK will be executed multiple times with

the same matrix, and the amortised execution time depends mostly

on the speed of this �nal execution stage. Therefore the execution

stage is made to be as simple as possible, since this code is the

main target for optimisation. However, since this is just exploratory

research, to understand if this approach is worth pursuing, most of

the possible optimisations are not implemented. Algorithm 4 shows

approximately the actions performed by this stage.

Algorithm 4 Execution(v , comm. and comp. bu�ers)

SpMV(v ,mptr ,mcol ,mval)
for r = 1 to s do

Update bu�er pointers based on the r
Communicate(communication bu�ers)

SpMV(v ,mptr ,mcol ,mval)

The intended use of DMPK consists of the following. First the

preprocessing stages are run which yields the communication and

communication bu�ers. These bu�ers encode the instructions the

execution stage should perform. After these bu�ers are obtained,

they are fed into the execution stage with the actual values of the

input vector, and then Algorithm 4 is executed multiple times. In

the beginning, based on the initial partition Π0, the vi values are
distributed to the di�erent processes. After the execution stage

�nishes, the same parts of the results are obtained in the same

partitions, because of the restriction for the last partitioning to

be the same as the initial partition. This is convenient, because it

enables the multiple executions with the input always being the

output of the previous execution.

5 EXPERIMENTS AND RESULTS
We now describe the results of our measurements on how DMPK

a�ects the amount of communication for various matrices. Our

main concern is the amount of communication and the amount

of redundant computation (naturally, lower is better for both). We

performed thesemeasurements of variousmatrices, some arti�cially

generated such as 5 or 9 point 2D meshes, and some from the

SuiteSparse Matrix Collection [4].

5.1 Experiments
The matrices measured for this paper are listed in Table 1. Each

matrix is described by its spyplot, name, description and the triple

showing number of rows, nonzeros and nonzeros/rows.

m5p10 m5p100 m9p10 m9p100

100 10,000 100 10,000

(100, 460, 5) (10K, 49.6K, 5) (100, 784, 9) (10K, 88K, 9)

bmw7st-1 cfd2 gearbox xenon2

Sti�ness Pressure Aircraft �ap Complex zeolite

matrix matrix actuator sodalite crystals

(141K, 7.3M, 51) (123K, 3.1M, 25) (153K, 9.1M, 59) (157K, 3.9M, 25)

Table 1: Measured matrices

For each matrix we measured the communication and the redun-

dant computation by setting di�erent values for the parameters

described in Table 2.

Param. description values

P the number of partitions/processes 4, 8

m the target level 10, 20

s the (maximal) number of phases 0, 1, . . . , 4

Table 2: Experiment parameters

5.2 Results
The results are presented in Figures 4 to 11. Each Figure contains

eight plots showing the number of transfers and redundantly com-

puted nodes as a function of s , the number of phases. For each

(P,m) pair where P ∈ {4, 8} andm ∈ {10, 20} the number of redun-

dant computations is represented by a solid line and the number of

transfers by a dashed line of the same colour. The correspondence

between the colours and (P,m) pairs is given in each �gure as a

legend.

The main observation, is that the amount of communication

grows, while the redundant computation shrinks as the number of

phases is increased. This is inline with our expectations.

As for the rest of the parameters for the greater value ofm = 20

levels, the overall amount of work is greater, resulting in more com-

munication and more redundant computation. For the other param-

eter of P , i.e. the number of partitions/processes, more partitions,

result in more communication and more redundant computations.

In general, the number of phases has a greater (positive) e�ect

on the amount of redundant computation than on communication.

That is, for di�erent values of s , the amount of communication only

changes by a factor of approximately ×1 − 1.5 (in the extreme case

of the gearbox matrix a factor of ×3), while in all experiments, the

amount of redundant computation is reduced by a factor of at least

×3, but usually it is much higher. For some of the matrices, such as

the m5p100, in some cases, the amount of redundant computation

is reduced to 0. This happens when the matrix is large and the

HPCAsia2020, January 15–17, 2020, Fukuoka, Japan Emil Vatai, Utsav Singhal, and Reiji Suda

0 1 2 3 4

0

1

2

3

4

5

·104

(4,10)

(4,20)

(8,10)

(8,20)

Figure 4: Comm. and redundant comp. for m5p10

0 1 2 3 4

0

2

4

6

8

·105

(4,10)

(4,20)

(8,10)

(8,20)

Figure 5: Comm. and redundant comp. for m5p100

number of levelsm is small. As a result, the phases climb too fast,

and reach the target level before the last phase, leaving no work,

hence no communication for the last phases.

The exact numbers are provided in a table for each matrix. The

columns for each matrix are the number of processes/partitions P ,
the target levelm, the number of phases s , the number of elements

transmitted during the execution in the comm column, number

of redundant multiplications performed in the red.calc column,

the minimum number of multiplications needed by the sequential

algorithm. As indicated earlier the case when s = 0 corresponds to

the PA1, and s = 1 to the PA2 algorithm.

6 CONCLUSIONS
Our conclusions is that we demonstrated the ability to control

the balance between communication and redundant computation,

P m s comm red.calc mincalc

4 10 0 300 8,440 4,600

4 10 1 464 7,012 4,600

4 10 2 573 5,003 4,600

4 10 3 694 3,418 4,600

4 10 4 723 1,779 4,600

4 20 0 300 22,240 9,200

4 20 1 492 20,680 9,200

4 20 2 621 18,583 9,200

4 20 3 759 16,720 9,200

4 20 4 904 13,876 9,200

8 10 0 679 17,555 4,600

8 10 1 869 16,554 4,600

8 10 2 1,042 12,903 4,600

8 10 3 1,137 9,595 4,600

8 10 4 1,180 6,785 4,600

8 20 0 700 49,627 9,200

8 20 1 924 48,472 9,200

8 20 2 1,151 44,475 9,200

8 20 3 1,321 40,625 9,200

8 20 4 1,474 36,845 9,200

Table 3: Matrix m5p10, n = 100

P m s comm red.calc mincalc

4 10 0 4,204 92,885 496,000

4 10 1 4,353 53,705 496,000

4 10 2 5,283 4,390 496,000

4 10 3 4,703 0 496,000

4 10 4 4,703 0 496,000

4 20 0 8,794 403,550 992,000

4 20 1 9,644 230,115 992,000

4 20 2 12,412 51,485 992,000

4 20 3 10,490 3,805 992,000

4 20 4 10,094 0 992,000

8 10 0 8,634 189,600 496,000

8 10 1 9,083 111,185 496,000

8 10 2 10,365 12,170 496,000

8 10 3 9,233 0 496,000

8 10 4 9,230 0 496,000

8 20 0 18,301 832,873 992,000

8 20 1 20,844 488,075 992,000

8 20 2 22,483 125,960 992,000

8 20 3 19,704 5,225 992,000

8 20 4 18,365 25 992,000

Table 4: Matrix m5p100, n = 10, 000

Diamond matrix powers kernels HPCAsia2020, January 15–17, 2020, Fukuoka, Japan

P m s comm red.calc mincalc

4 10 0 300 16,200 7,840

4 10 1 492 13,632 7,840

4 10 2 662 9,960 7,840

4 10 3 748 8,493 7,840

4 10 4 738 4,944 7,840

4 20 0 300 39,720 15,680

4 20 1 492 37,152 15,680

4 20 2 662 33,480 15,680

4 20 3 748 32,013 15,680

4 20 4 822 27,945 15,680

8 10 0 700 36,491 7,840

8 10 1 882 35,140 7,840

8 10 2 1,098 29,197 7,840

8 10 3 1,144 24,333 7,840

8 10 4 1,280 18,548 7,840

8 20 0 700 91,371 15,680

8 20 1 882 90,020 15,680

8 20 2 1,098 84,077 15,680

8 20 3 1,146 79,205 15,680

8 20 4 1,319 73,234 15,680

Table 5: Matrix m9p10, n = 100

P m s comm red.calc mincalc

4 10 0 5,231 205,740 888,040

4 10 1 5,489 119,784 888,040

4 10 2 6,245 16,227 888,040

4 10 3 5,582 0 888,040

4 10 4 5,582 0 888,040

4 20 0 11,152 907,854 1,776,080

4 20 1 12,306 516,519 1,776,080

4 20 2 13,736 163,530 1,776,080

4 20 3 11,369 0 1,776,080

4 20 4 11,553 0 1,776,080

8 10 0 10,206 393,639 888,040

8 10 1 10,837 232,092 888,040

8 10 2 12,672 37,080 888,040

8 10 3 10,977 225 888,040

8 10 4 10,861 0 888,040

8 20 0 22,747 1,796,226 1,776,080

8 20 1 27,346 1,063,077 1,776,080

8 20 2 28,116 426,261 1,776,080

8 20 3 28,096 93,120 1,776,080

8 20 4 25,673 7,515 1,776,080

Table 6: Matrix m9p100, n = 10, 000

P m s comm red.calc mincalc

4 10 0 103,734 21,279,430 73,396,670

4 10 1 92,848 9,370,179 73,396,670

4 10 2 198,216 3,393,539 73,396,670

4 10 3 234,067 821,530 73,396,670

4 10 4 246,197 397,594 73,396,670

4 20 0 206,391 100,903,516 146,793,340

4 20 1 245,413 50,270,950 146,793,340

4 20 2 385,189 30,505,549 146,793,340

4 20 3 541,531 15,052,740 146,793,340

4 20 4 613,673 9,579,194 146,793,340

8 10 0 196,097 38,216,211 73,396,670

8 10 1 189,634 18,517,632 73,396,670

8 10 2 308,348 8,769,146 73,396,670

8 10 3 346,686 3,265,894 73,396,670

8 10 4 343,883 916,410 73,396,670

8 20 0 424,522 196,086,374 146,793,340

8 20 1 581,491 112,243,853 146,793,340

8 20 2 651,959 81,637,790 146,793,340

8 20 3 776,980 53,805,529 146,793,340

8 20 4 821,521 29,624,723 146,793,340

Table 7: Matrix bmw7st-1, n = 141, 347

P m s comm red.calc mincalc

4 10 0 74,764 7,899,661 30,878,980

4 10 1 72,752 4,261,138 30,878,980

4 10 2 115,006 1,394,205 30,878,980

4 10 3 112,926 63,738 30,878,980

4 10 4 113,732 0 30,878,980

4 20 0 162,102 36,679,638 61,757,960

4 20 1 179,461 19,871,171 61,757,960

4 20 2 241,504 11,842,488 61,757,960

4 20 3 242,271 3,784,788 61,757,960

4 20 4 283,448 1,109,227 61,757,960

8 10 0 160,910 16,385,185 30,878,980

8 10 1 165,716 9,315,419 30,878,980

8 10 2 236,076 3,944,445 30,878,980

8 10 3 230,694 755,601 30,878,980

8 10 4 231,601 75,759 30,878,980

8 20 0 356,158 80,296,593 61,757,960

8 20 1 461,567 48,875,192 61,757,960

8 20 2 519,581 32,421,385 61,757,960

8 20 3 532,937 16,330,783 61,757,960

8 20 4 612,157 9,061,078 61,757,960

Table 8: Matrix cfd2, n = 123, 440

HPCAsia2020, January 15–17, 2020, Fukuoka, Japan Emil Vatai, Utsav Singhal, and Reiji Suda

P m s comm red.calc mincalc

4 10 0 99,692 24,294,608 90,804,040

4 10 1 95,352 9,871,755 90,804,040

4 10 2 198,999 5,181,359 90,804,040

4 10 3 264,897 2,614,449 90,804,040

4 10 4 295,686 883,211 90,804,040

4 20 0 183,428 110,204,862 181,608,080

4 20 1 264,229 67,021,869 181,608,080

4 20 2 368,755 53,890,878 181,608,080

4 20 3 477,365 41,613,472 181,608,080

4 20 4 587,471 28,533,642 181,608,080

8 10 0 217,601 49,363,088 90,804,040

8 10 1 228,729 24,352,678 90,804,040

8 10 2 324,833 14,308,198 90,804,040

8 10 3 396,593 7,301,514 90,804,040

8 10 4 441,470 3,800,870 90,804,040

8 20 0 456,246 254,922,118 181,608,080

8 20 1 668,806 164,982,291 181,608,080

8 20 2 766,438 133,312,370 181,608,080

8 20 3 813,534 102,416,480 181,608,080

8 20 4 859,458 78,584,864 181,608,080

Table 9: Matrix gearbox, n = 153, 746

P m s comm red.calc mincalc

4 10 0 124,366 13,408,903 38,666,880

4 10 1 135,012 7,774,501 38,666,880

4 10 2 242,836 3,303,020 38,666,880

4 10 3 247,330 387,953 38,666,880

4 10 4 241,865 4,262 38,666,880

4 20 0 267,843 59,836,338 77,333,760

4 20 1 317,809 35,868,447 77,333,760

4 20 2 465,274 26,053,918 77,333,760

4 20 3 531,210 12,186,619 77,333,760

4 20 4 568,840 2,911,517 77,333,760

8 10 0 242,719 25,532,527 38,666,880

8 10 1 269,925 15,186,539 38,666,880

8 10 2 401,719 6,452,540 38,666,880

8 10 3 424,061 1,307,478 38,666,880

8 10 4 428,071 251,333 38,666,880

8 20 0 530,344 117,765,880 77,333,760

8 20 1 777,237 80,374,888 77,333,760

8 20 2 851,761 55,166,197 77,333,760

8 20 3 897,783 32,323,057 77,333,760

8 20 4 935,267 19,230,184 77,333,760

Table 10: Matrix xenon2, n = 157, 464

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

·105

(4,10)

(4,20)

(8,10)

(8,20)

Figure 6: Comm. and redundant comp. for m9p10

0 1 2 3 4

0

0.5

1

1.5

·106

(4,10)

(4,20)

(8,10)

(8,20)

Figure 7: Comm. and redundant comp. for m9p100

furthermore reduction of redundant computation is greater than

the increase of communication.

To achieve this, we had to �nd a good approach to repartition the

graph in the intermediate phases. This was done, by transforming

the information contained in the levels of vertices into edge weights,

and so transform the problem of minimising communication to a

problem of �nding minimal edgecut.

All the code developed for this research is available at https:

//github.com/vatai/mpk/.

7 FUTUREWORK AND LIMITATION
Since this research is in it’s preliminary stages, it limitations. We

don’t present any performance measurements (in terms of execu-

tion speed), since the code is not optimised at all.

There is a lot to be done to make use of these ideas in real

applications.

https://github.com/vatai/mpk/
https://github.com/vatai/mpk/

Diamond matrix powers kernels HPCAsia2020, January 15–17, 2020, Fukuoka, Japan

0 1 2 3 4

0

0.5

1

1.5

2

·108

(4,10)

(4,20)

(8,10)

(8,20)

Figure 8: Comm. and redundant comp. for bmw7st-1

0 1 2 3 4

0

2

4

6

8

·107

(4,10)

(4,20)

(8,10)

(8,20)

Figure 9: Comm. and redundant comp. for cfd2

The most obvious bottleneck in the current implementation

is the lack of hiding the communication. The MPI routine used is

synchronous call, which does not allow any computation to be done

while communication is in progress. This is an obvious discrepancy

and also the least trivial problem. The basic idea to solve this, is to

somehow cut the execution bu�er in half (or smaller chunks) and

start the communication as soon as these chunks are computed,

without withing for the commutation of the whole phase to �nish.

The other problem would be load balancing. Simply looking at

size of the �les which store the communication and computation

bu�ers for each process, it is obvious that the amount of work

performed by the di�erent process is signi�cant which degrades

the performance.

And �nally, the code to do the computation in each phase after

the communication was completed is sequential. If a computation

node has multiple cores, there is no reason not to use all of them by

0 1 2 3 4

0

1

2

·108

(4,10)

(4,20)

(8,10)

(8,20)

Figure 10: Comm. and redundant comp. for gearbox

0 1 2 3 4

0

0.5

1

·108

(4,10)

(4,20)

(8,10)

(8,20)

Figure 11: Comm. and redundant comp. for xenon2

implementing a hybrid MPI/OpenMP parallel approach. However,

this situation is mitigated somewhat by the fact that the execution

stage, which would need to run on multiple threads is very similar

to the traditional SpMV algorithm, and there is ample amount of

literature which deals with this issue such as [15] for example.

REFERENCES
[1] Zhaojun Bai, Jack Dongarra, Ding Lu, and Ichitaro Yamazaki. 2019. Matrix

Powers Kernels for Thick-Restart Lanczos with Explicit External De�ation. In

International Parallel and Distributed Processing Symposium (IPDPS).
[2] G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz.

2014. Communication lower bounds and optimal algorithms for numerical linear

algebra. Acta Numerica (2014), 1–155.
[3] Vinayaka Bandishti, Irshad Pananilath, and Uday Bondhugula. 2012. Tiling

Stencil Computations to Maximize Parallelism. In Proc. SC12.
[4] Timothy A. Davis and Yifan Hu. 2011. The University of Florida Sparse Matrix

Collection. ACM Trans. Math. Softw. 38, 1, Article 1 (Dec. 2011), 25 pages. https:

//doi.org/10.1145/2049662.2049663

[5] James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, and Katherine Yelick.

2007. Avoiding communication in computing Krylov subspaces. EECS Dept., UC

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663

HPCAsia2020, January 15–17, 2020, Fukuoka, Japan Emil Vatai, Utsav Singhal, and Reiji Suda

Berkeley, Tech. Rep. UCB/EECS-2007-123 (2007).
[6] James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, and Katherine Yelick.

2008. Avoiding communication in sparse matrix computations. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on. IEEE,
1–12.

[7] Stefan Feuerriegel and H.Martin Büker. 2015. The Non-Symmetric s-step Lanzcos
Algorithm: Derivation of E�cient Recurrences and Synchronization-Reducing

Variants of BiCG and QMR. Int. J. Appl. Math. Comput. Sci. 4 (2015), 769–785.
[8] Message Passing Interface Forum. 2015. MPI: A Message-passing Interface Stan-

dard, Version 3.1 ; June 4, 2015. High-Performance Computing Center Stuttgart,

University of Stuttgart. https://books.google.co.jp/books?id=Fbv7jwEACAAJ

[9] Mark Hoemmen. 2010. Communication-avoiding Krylov subspace methods. Ph.D.
Dissertation. University of California, Berkeley.

[10] George Karypis and Vipin Kumar. 1998. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on scienti�c Computing 20, 1

(1998), 359–392.

[11] Marghoob Mohiyuddin. 2012. Tuning Hardware and Software for Multiprocessors.
Ph.D. Dissertation. UC Berkeley.

[12] Y. Saad. 1996. Iterative Methods for Sparse Linear Systems. PWS Publishing

Company. https://books.google.co.jp/books?id=jLtiQgAACAAJ

[13] Reiji Suda. 2016. Domain Decomposition Algorithm for Generalized Diamond

Matrix Powers Kernel. In IPSJ SIG Technical Report.
[14] David G. Wonnacott and Michelle Mills Strout. 2013. On the Scalability of Loop

Tiling Techniques. In Proc. IMPACT 2013.
[15] Katherine Yelick, James Demmel, Leonid Oliker, Samuel Williams, Richard Vuduc,

and John Shalf. 2009. Optimization of sparse matrix-vector multiplication on

emerging multicore platforms. Parallel Comput. 35, 3 (2009), 178–194. https:

//doi.org/10.1016/j.parco.2008.12.006

https://books.google.co.jp/books?id=Fbv7jwEACAAJ
https://books.google.co.jp/books?id=jLtiQgAACAAJ
https://doi.org/10.1016/j.parco.2008.12.006
https://doi.org/10.1016/j.parco.2008.12.006

	Abstract
	1 Introduction
	2 Communication in MPK
	2.1 Graph representation
	2.2 Parallel computation and communication in MPK

	3 Diamond Matrix Powers Kernel
	4 Details
	4.1 Repartitioning the graph
	4.2 Determining communication patterns
	4.3 Execution: performing the calculations

	5 Experiments and results
	5.1 Experiments
	5.2 Results

	6 Conclusions
	7 Future work and limitation
	References

