Outlook on generating optimal HPC code with ML

Emil VATAI, https://vatai.github.io/talks/2022jlesc.pdf

September 28, 2022

https://vatai.github.io/talks/2022jlesc.pdf

Outline

Intro

Code Generation

About us

» Emil Vatai, Riken R-CCS, https://vatai.github.io/talks/2022jlesc.pdf
» RIKEN R-CCS, High Performance Artificial Intelligence Team
» Team leader: Mohamed WAHIB

» WE ARE HIRING!
https://www.riken. jp/en/careers/researchers/20220511_1/index.html

https://vatai.github.io/talks/2022jlesc.pdf
https://www.riken.jp/en/careers/researchers/20220511_1/index.html

Other works

» NLP: Alex Drozd
» Spiking neural networks, Brain simulations: Jun Igarashi

» FugakuNext colaboration Jens Domke from Supercomputing Performance Research
Team (SuPeR) (they are also HIRING) and others

» Sparsity in numerical methods and ML (my little project)

https://www.riken.jp/en/careers/researchers/20220615_1/index.html

Terminology: codegen

1. ML people:

> generating code from text (e.g. git{hub,lab} commit messages)
2. Compiler people:

» "lowering" to LLVM-IR, assembly or similar
3. HPC people:

» "performance portability via source to source compilation"
> E.g. polly, Pluto, PPCG

Overview

Note: High level transformation — hand tuned by experts

compiler Technologies High-level Code-Transformation
Code auto-generation
v g 4/ High-level context

X High-level context lost This Proposal

x Not scalable
x Constrained time budget 1

% X Problem-specific [+ compiler tech. !
” High-level trans. = Machine Learning
> Auto-tuning

/ Scalable exploration; general
v

High-level context
/ Code auto-generation
v Elastic time budget

v General and expandable approach
Auto-tuning

/ Scalable exploration; general X No code auto-generation

The problem and the goal

> Vast number of experts need to be working on optimizing HPC codes to obtain
maximal performance

» The problem: performance portability (for HPC codes)
> Automatic but not restricted like compilers ("too generic" + playing it safe)
» ML driven: shrinking the vast search space
» Focused on scientific codes (e.g. stencils)

» Our goal: Use ML for high-level optimization
» The ultimate goal: Al produces fastest code for any machine
» Realistic goal: find a foothold in this field of code generation by learning to generate
optimal code for simpler (but still important) problems
» Key points: representation, ML methods, candidate applications
» ML for high-level optimizations is mostly left unexplored

A framework to automate the process

application =
source codes

i= basic transformations X generative grammar
— to derive complex

transformations
hardware '\LJ polyhedral & machine learning for Monte-Carlo tree
specification ., representation w efficient tree search search
Ee——e=——1%_) =
" n %] rransformed database of past " - candidate
igh performance an code evaluation results for Performance evaluation .
on target or simulated transformation

| resource utilization training ML models
X hardware

The main questions

» Representation = ML methods

for

N

expr

/\

Domain: {Si[i]: 0 <i < N;}U

{Safi.j]:0<i< NAO<j<N}

Write: {S1[i] — v[il; Safi, 7] — v[i]}
body Read: {Ss[i, j] — v[i]: Sali. j] — A
AST

-‘ I § LLVM
void mv(size_t N, double *A, double *v){

for(size_t i =0; i <N; i++){
v[i] = 0.0

for(size_t j=0; j <N; j++){
v[i] 4

A[i*N+j]
}

%10 = load 164, i64* %7, align 8
%11 = load i64, i64x %4, align 8
%12 = icmp ult 164 %10, %11

br i1 %12, label %13, label %42

i, 4]}

Current efforts

» Polyhedral: ISL, Polly, Polygeist

» Candidate for representation: It is a symbolic representation of loops which a
compact and precise description of the dependencies and the legality of
transformations.

» Simple stencil benchmarks, weather codes.

	Intro
	Code Generation

