il I

TADASHI: Enabling ML to explore transformat ns v
guaranteed correctness ‘

Riken R-CCS, High Performance Artificial Intelligence Systems Research Team,
Japan

=
@Rcm g\

Outline

Intro

Motivation

pip install tadashi
The Long Term Vision
...and how it’s goin’

Bonus 3 Slide Polyhedral Tutorial

-
Rom 8\

The Team

Emil Aleksandr Ivan R. Jodo E. Mohamed
VATAI DROZD IVANOV BATISTA WAHIB

r%,
@cm AN

THIS 1S YOUR MACHINE (EARNING SYSTEM?

YOP! YOU POUR THE DATA INTO THIS BIG
PILE OF UNEAR ALGEBRA, THEN COLLECT
THE ANSLERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG?)

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

@ Sm
RIKZH R'ccs

N

-
H

i

\.

ML approaches to correctness in code generation

» Extensive unit testing

» Coverage
> Writing tests is not trivial

» Surrogate ML model
» Round-trip
» Trust issues

» Limit ML to short sequences of
instructions
» Limit ML to a set of determined
transformations
> Not general
» Symbolic execution
»> Not well established

Edsger W. Dijkstra
“Program testing can be
used to show the presence
of bugs, but never to show
their absence!”

Some people don’t even do that

Job interviewer: It says in your C\V'
that you are quick at mathematics,
What s 17x197

We: 35 D
Interviewer: That's not even close

Me: But it was quick

: f Y'

Microsoft CEO says up to 30% of the
's code was written b

Microsoft admits almost all major
Windows 11 core features are broken

Scope:

> Hotspots

How it was done before
» By hand!

» Pluto, PPCG: Heuristics that don’t scale
» Different approaches AI/Compiler/Applications people

Our view: Not writing, but rewriting
> ML codegen is transformations on a reference implementation

» ML can explore the space of transformations to find a faster version
» But we also need correctness

@ Sm
RIKZH R'ccs

All you need is to sample the set of correct transformations

9
ETED
/

Loop Transformations

full full

FUSE SPLIT

partial partial

) val
INTER- p ar?‘ﬁ SHIFT var SCALE
CHANGE " param

=4
@com g8\

TADASHTI: loop transformations with correctness check

input.c output.c
Set of all transformations:
for (int £=0; t<T; t4+) { legal (+) and illegal (%) for(int c0=0; cO<T; cO+=1) {
for (int i<N-1; i+4) x b[2]=(a(l]+a[2]+a[3])/3;
bli] = (ali-1] + a(i] + a[i+1])/3; x) for (int cl=2+c0+3; cl<N+2+c0-1;
for (int j=2; I<N-1; 3++) * % bl-2+cO4cl] = (al-2scOtcl-1] + a[-2scO+cl]
alil = bl[il; a c1+1])/3;
) bl-2rc0tcl-1];

[l

+ FullFuse()

+ FullShiftVar(2, 0)
b ® Choice of ML models:

+ PartialShiftVal(0, 1)|

- [Supervised learning

- PET ST
(D, 0, G) N - v SetLoopOpt(0, 3) \ Sample: Random primitive transformation
h train.py

: N i’_} (Unsupervised learning (LLMs)
)

\ Sample: Random composite transformations for a dataset

)

“app = Simple("./input.c"
model = Model() .___ Any) o | e :
for _ in range(10): ~~---__ ,‘7"’“1

-
‘ Reinforcement learning

(4 . -
9 — legahty(e', G) node = model.get_loc (app.scops) |
Te-- ,‘7 - - ~o _,tr = model.get_transforma (node) ‘ Sample: Neighbouring primitive transformations J:/
, &\6%? e NN N args = model.get_args(node, tr) [Evolulionary algorithms W
0 ‘/ e “legal = node.transform(tr, *args) LSamplc Random sequence of primitive transformations J
- if legal: p
||" - tapp = app.generate_code () [Auto-tuning W

; ‘
codegen(D, §') —— output.c t = tapp.compile () .measure () & corocern

model.update (t, node, tr, args)

[]
RIKZH

End-to-end example (bootstrapping for ML dev)

© 0o ~ (2] o [w V] =

I e e e =
(&} ot S w [V] [o

i
3

from pathlib import Path

from random import choice, seed
import tadashi

from tadashi.apps import Simple

seed(1234)
dir_path = Path(__file__).parent
examples_path = dir_path if dir_path.name == "examples" else "exc

app = Simple(f"{examples_path}/inputs/depnodep.c")

node = app.scops[0].schedule_tree[1]

tr = choice(node.available_transformations)

args = choice(node.get_args(tr, -10, 10))

legal = node.transform(tr, =*args)

app.compile()

transformed_app = app.generate_code()
transformed_app.compile() -
print(f"{app.measure()=}") F3<CWII ///%\\\
print (f"{transformed_app.measure()=}") uen RCCS g

Transformation list

v trs = [[3, "FULL_SPLIT"],
2 [1, "TILE2D", 32, 35],
3 [5, "INTERCHANGE"]]

-
Rcom /i

Files on disc

node =
app.scops[0].schedule_tree[42]

legal =
node.transform()

node.reset()
legal =
node.rollback()
node.transform()

tapp=
app.genera'te_code()

v

new.c

Benchmarking harness

The compiler spends a few minutes
optimising the code on a single node.
Why not use the entire supercomputer?
» Benchmarking harness
» Distribute compiling and running
of benchmarks
> Collect the speedups to remote
nodes
> Uses MPI4py, and exposed to the
user as concurrent. futures
(from the Python standard)

208

Grand vision

Large scale optimisation framework

New Train
% .
supercomputer Tadashi

Wise words
Spending 6h on the whole machine to make the code 5% faster will
pay off. — N. D.

r;v
@cm s\

Reinforcement learning

» Actions = primitive transformations; Reward = walltime; Environment =

correctness
"" v

y /"/ 2
Reward = 425 v~ ¥

v '&/
FullFuse() v

FullShiftVar(2,0) | \>§

PartialShiftVal(0, 1) ”. 4)

4 v v

SetLoopOpt(0, 3)

-
Rom 8\

Supervised learning

» Dataset generation (legal transformations); Sample label: runtime

Set of all transformations: 27.31018s

legal (v)) and illegal () 17.9779s

/ ‘// v 1.46942s

Y - 5.31311s

22.60437s

¢ FullFuse() 4 1.30005s
¢ FullShiftVar(2, 0) -

¥ PartialShiftVal(, 1)| v ,/ 49.74213s

v SetLoopOpt(0, 3) i /

%1
@cm s\

Evolutionary algorithms

» Exploration and explorations; Candidates = transformations; Objective
function = runtime

4 v

Obj.func. = 42s ¥
v v Yy

FullFuse() o/

FullShiftVar(2, 0)
¥ PartialShiftVal(0, 1)
SetLoopOpt(0, 3)

r;v
@cm s\

LLM agents

» Dataset generation; High quality correct transformations; Caveat!

Hallucinations are possible!

codeX.c

for (int t=0; t<T; t++) {
for (int i=2; i<N-1; i++)
blil=(ali-1]+alil+ali+11)/3
for (int j=2; j<N-1; j++)
aljl=bl[jl;

3}

codeO0.c

codenc
[codetc

¢ FullFuse()

¢ FullShiftVar(2, 0)

v PartialShiftVal(o, 1)

codeX-vY.c

for(int c0=0; c0O<T; c0+=1) {

bL2]=(al1]1+al2]+al31)/3;

for(int c1=2%c0+3; cl1<N+2%cO-1; cl+=1) {
b[-2%c0+c1] = (al-2%cP+c1~1]/+ a[-2*xc0o+c1]

al[-2%co+c1+11)/3;

al[-2*%co+cl-1] = b[-2%xc@+cl-11;

}

a[N-2] = b[N-21;

codeZ—V3x::v

code2-v21::v

|
- JJ’ code2-vl.c

/ SetLoopOpt(0,3) | -

@ Sm
RIKZH R'ccs

N
ETED
7

Auto-Tuning
» Brute forcing on a bounded region of the space (grid search)

v

FullFuse()

FullShiftVar(2, [0..10])

PartialShiftVal(0, [1..16])

Tile([4, 8, 16, 32]) ¢ 'EEE
e 238 [RZIAN

ML opportunities

Different levels of abstraction/representations:

» source code [Stein: Paraphrasing etc.]
abstract syntax tree (AST) [Shido: Tree-LSTM etc.]
polyhedral [Baghdadi: Tiramisu]

>

>

» dependency graphs [Cummins: ProGraML]

» intermediate Representations (IR) [Ben-nun: inst2vec]
>

assembly instructions [Deepmind: Faster sorting]

Three levels of transfer learning
1. No Transfer: Train from scratch for each (SW, HW) pair

2. Transfer to new software
3. Transfer to new hardware =
- . . m A\
Less retraining, Better exploration = better results for a given kerheR.ccs 7=\

Speedups: Heuristic, MCTS, GP
for heuristic, Monte Carlo Tree Search, Pluto

Single-thread speedup

Multi-thread speedup

320

80 1

20 1

—

320

80 7

204

v

—

I Pluto
Heuristic
s MCTS

"7

9\ &" sff" @
0

\‘b

S
&
&

& & °°° *o‘° q}

&
&
s

"r
.
e,

b@“ §°\ S S‘b
@b

05

40‘ (\é‘ ,,)b \b ,»b \o &Q 4\ Qo ,\p
‘é& z?’ & ‘~" Sb
A &

o°
&
°é

S
SIS

¢

[m]

&0\4
ﬁ%%&’

RIS u R-CCS

, 10 seq), Throughput

1ve

t

.

1mi

Overhead breakdown (pr

Throughput

sequence

10-long

Primitive

3
-
=

—
—
=
o
> -
Z Novings
3
E3
=2 L
b —
=
g _2§ b
.22
g5
Bl
ER-I
gEREE k|
E 2 —
HOUFd
10—
!
§ 2 = 8 3 =
(035) awimuny
!
p!
—
——
=
>]
E
2
b —
=
g_2§ 1
£:E%
£
ESLEE
£Z 552
ER-
8 L & E
2ET E]
HOUFR®R
[
110 =
s £ = 8 = =

(2a5) oumumy

Real world applications

» miniAMR 5%
» Finite-difference time-domain FDTD 13x

Known limitations
> C only
» SCoP (polyhedral transformations)
> PET/ISL
> CPU only

%1
@cm s\

Future Works: Fortran

Current backend: PET+ISL

CTadashi
App PET ISL Legality check New app
source .C
dom, deps, sched
dom, deps, sched
transformation
User
source
new|sched
App PET ISL Legality check New app
User

@ Sm
RIKZH R‘CCS

9
EMED
7

Future Works: Fortran

WIP backend: LLVM+ISL

Tadashi

App(clang) LLVM (Polly)

source .C

jscop

App(clang) LLVM (Polly)

IsL LLVM (Polly)

sched

Binary

User
ISL LLVM (Polly)

User

@ Sm
RIKZH R‘CCS

9
EMED
7

Roadmap

> Codegen: GPU
> ML
» Beyond polyhedral

%1
@cm s\

That’s all folks!

» i. https://vatai.github.io/
» ii. https://github.com/vatai/tadashi/
» iii. https://arxiv.org/abs/2410.03210

[iﬂ""' [=] ?ET]F'W [&]
[i" .Fggihil | =] ::-i

=
@cm s\

https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210
https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210

Polyhedral model

Components

—

1. Ds ={S[i| € Z": Ai+b < 0}
2. 6(S[i,5]) =t =(4,9)
3. G=(V,E):

> V:{So,§1,...},

> B ={Si[d] — S;[r],...}

Mini example
for(int i = 0; 1 < N; i++)
for(int j = 1; j < M; j++)

=y
@cm AN

R S
\

777777777777 s

’

e NG NG
\
s

jé Legality check
*0

gille

S[i’j_ 1] HS[’!./]

O(S[i.jD) 5 (G +Jj.))

glle

S[ls.l - 1] g S[lvj]

O(S[i.jD 5 (.—))

(i+j-1j-1) - >(+],))

(is _j + 1) g (17 _.])

§=(+j,j)-(+j-1,j-1)
=(1,1) >gx 0

-

c d 8(S[3, 7)) = (5, —j
oSl g = i) oD)

-

6:(i’_j)_(i’_j+1)

=(0,-1) $1ex 0

Ram 8\

RIKZH

R-CCS

Symbolic representation

y%y
Rgm A

tadashi scop

input.c

Qﬁ

S

—O>

=

=4

SoJ,

N

e[l A

output.c

Code
generation

Legality check

Current node
navigation

Dependency graph G)

0101

(Transformation l

Transformed
schedule tree

RIKZH

)

R-CCS

AN

That’s all folks!

» i. https://vatai.github.io/
» ii. https://github.com/vatai/tadashi/
» iii. https://arxiv.org/abs/2410.03210

[iﬂ""' [=] ?ET]F'W [&]
[i" .Fggihil | =] ::-i

=
@cm s\

https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210
https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210

	Intro
	Motivation
	pip install tadashi
	The Long Term Vision
	…and how it's goin'
	Bonus 3 Slide Polyhedral Tutorial

