
TADASHI: Enabling ML to explore transformations with
guaranteed correctness

E. Vatai, A. Drozd, I. R. Ivanov, J. E. Batista, Y. Ren, M. Wahib

Riken R-CCS, High Performance Artificial Intelligence Systems Research Team,
Japan



Outline

Intro

Motivation

pip install tadashi

The Long Term Vision

. . . and how it’s goin’

Bonus 3 Slide Polyhedral Tutorial



The Team

Emil
VATAI

Aleksandr
DROZD

Ivan R.
IVANOV

João E.
BATISTA

Mohamed
WAHIB





ML approaches to correctness in code generation

▶ Extensive unit testing
▶ Coverage
▶ Writing tests is not trivial

▶ Surrogate ML model
▶ Round-trip
▶ Trust issues

▶ Limit ML to short sequences of
instructions
▶ Limit ML to a set of determined

transformations
▶ Not general

▶ Symbolic execution
▶ Not well established

Edsger W. Dijkstra
“Program testing can be
used to show the presence
of bugs, but never to show
their absence!”

Some people don’t even do that



All you need is to sample the set of correct transformations

Scope:
▶ Hotspots

How it was done before
▶ By hand!
▶ Pluto, PPCG: Heuristics that don’t scale
▶ Different approaches AI/Compiler/Applications people

Our view: Not writing, but rewriting
▶ ML codegen is transformations on a reference implementation
▶ ML can explore the space of transformations to find a faster version
▶ But we also need correctness



Loop Transformations

TILE
1d
2d
3d

INTER-
CHANGE

full FUSEpartial
full SPLITpartial

partial
full SHIFT

val
var
param

SCALE



TADASHI: loop transformations with correctness check

train.py

app = Simple("./input.c")
model = Model()
for _ in range(10):

node = model.get_loc(app.scops)
tr = model.get_transforma(node)
args = model.get_args(node, tr)
legal = node.transform(tr, *args)
if legal:

tapp = app.generate_code()
t = tapp.compile().measure()
model.update(t, node, tr, args)

input.c

for (int t=0; t<T; t++) {
for (int i=2; i<N-1; i++)
b[i] = (a[i-1] + a[i] + a[i+1])/3;

for (int j=2; j<N-1; j++)
a[j] = b[j];

}

output.c

for(int c0=0; c0<T; c0+=1) {
b[2]=(a[1]+a[2]+a[3])/3;
for(int c1=2*c0+3; c1<N+2*c0-1; c1+=1) {
b[-2*c0+c1] = (a[-2*c0+c1-1] + a[-2*c0+c1] +

a[-2*c0+c1+1])/3;
a[-2*c0+c1-1] = b[-2*c0+c1-1];
}

a[N-2] = b[N-2];
}

SEAL OF
CORRECTNESS!

"Q.E.D.

Set of all transformations:
legal (") and illegal ($)

$

"

$
"$

"
$

"
$

"

$

"

$

"

$

"

$

"

$

"

$" $
"

$

"

$

"

$

"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"
$

"

$

"

$
"

$

"

$

"

$
"

$

"

$

"

$

" $

"

$
"

$

"$

"

$
"

$

"

$
"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

input.c (D, 𝜃, 𝐺)

𝜃′ legality(𝜃′, 𝐺)

codegen(D, 𝜃′) output.c

PET

new
sch

edu
le

𝐺

𝜃′

𝜃′ Dif leg
al

Tadashi Choice of ML models:

Supervised learning
Sample: Random primitive transformation

Unsupervised learning (LLMs)
Sample: Random composite transformations for a dataset

Evolutionary algorithms
Sample: Random sequence of primitive transformations

Auto-tuning
Sample: Grid/interval of composite transformations

Reinforcement learning
Sample: Neighbouring primitive transformations

Any ML model

" FullFuse()

" FullShiftVar(2, 0)

" PartialShiftVal(0, 1)

" SetLoopOpt(0, 3)



End-to-end example (bootstrapping for ML dev)
1 from pathlib import Path
2 from random import choice, seed
3 import tadashi
4 from tadashi.apps import Simple
5 seed(1234)
6 dir_path = Path(__file__).parent
7 examples_path = dir_path if dir_path.name == "examples" else "examples"
8 app = Simple(f"{examples_path}/inputs/depnodep.c")
9 node = app.scops[0].schedule_tree[1]

10 tr = choice(node.available_transformations)
11 args = choice(node.get_args(tr, -10, 10))
12 legal = node.transform(tr, *args)
13 app.compile()
14 transformed_app = app.generate_code()
15 transformed_app.compile()
16 print(f"{app.measure()=}")
17 print(f"{transformed_app.measure()=}")



Transformation list

1 trs = [[3, "FULL_SPLIT"],
2 [1, "TILE2D", 32, 35],
3 [5, "INTERCHANGE"]]



Files on disc

Polyhedral 

representation

legal = 

node.transform()

legal = 

node.transform()

node = 

app.scops[0].schedule_tree[42]

tapp = 

app.generate_code()

node.reset()

node.rollback()

𝑠
0

𝑠
1

𝑠
2

orig.c

new.c



Benchmarking harness

The compiler spends a few minutes
optimising the code on a single node.
Why not use the entire supercomputer?
▶ Benchmarking harness
▶ Distribute compiling and running

of benchmarks
▶ Collect the speedups to remote

nodes
▶ Uses MPI4py, and exposed to the

user as concurrent.futures
(from the Python standard)

rank0

rank1

rank2

rank3

rank4

rank5

gcc2x

gcc

0.2x

gcc

2.2x
gcc0.8x

gcc1.3x



Grand vision

Large scale optimisation framework

New
supercomputer

Train
Tadashi

New code Inference ©

Wise words
Spending 6h on the whole machine to make the code 5% faster will
pay off. – N. D.



Reinforcement learning

▶ Actions = primitive transformations; Reward = walltime; Environment =
correctness

$

"

$
"$

"
$

"
$

"

$

"

$

"

$

"

$

"

$

"

$" $
"

$

"

$

"

$

"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"
$

"

$

"

$
"

$

"

$

"

$
"

$

"

$

"

$

" $

"

$
"

$

"$

"

$
"

$

"

$
"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$"

$

"

$

"

$

"

$"

$"

$

"
" FullFuse()

" FullShiftVar(2, 0)

" PartialShiftVal(0, 1)

" SetLoopOpt(0, 3)

Reward = 42𝑠



Supervised learning
▶ Dataset generation (legal transformations); Sample label: runtime

Set of all transformations:
legal (") and illegal ($)

$

"

$
"$

"
$

"
$

"

$

"

$

"

$

"

$

"

$

"

$" $
"

$

"

$

"

$

"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"
$

"

$

"

$
"

$

"

$

"

$
"

$

"

$

"

$

" $

"

$
"

$

"$

"

$
"

$

"

$
"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

"

49.74213s
"

1.30005s"
22.60437s

"

5.31311s

"

1.46942s

"

17.9779s

"

27.31018s

" FullFuse()

" FullShiftVar(2, 0)

" PartialShiftVal(0, 1)

" SetLoopOpt(0, 3)

"



Evolutionary algorithms

▶ Exploration and explorations; Candidates = transformations; Objective
function = runtime

Gen1Gen2Gen2
$

"

$
"$

"
$

"
$

"

$

"

$

"

$

"

$

"

$

"

$" $
"

$

"

$

"

$

"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"
$

"

$

"

$
"

$

"

$

"

$
"

$

"

$

"

$

" $

"

$
"

$

"$

"

$
"

$

"

$
"

$
"

" FullFuse()

" FullShiftVar(2, 0)

$ PartialShiftVal(0, 1)

" SetLoopOpt(0, 3)

Obj.func. = 42𝑠



LLM agents

▶ Dataset generation; High quality correct transformations; Caveat!
Hallucinations are possible!

code0.c

"

code0-v1.c

"
code0-v2.c

"

code0-v3.c
"

code0-v4.c

"

code0-v5.c

"

code0-v6.c

code1.c

" code1-v1.c

"

code1-v2.c
"

code1-v3.c

"

code1-v4.c

"

code1-v5.c

"

code1-v6.c

code2.c

"

code2-v1.c

"

code2-v2.c
"

code2-v3.c
"

code2-v4.c

"

code2-v5.c

"

code2-v6.c

$

"

$

"

$

"

$

"

$

"
$

"

$

"

$
"

$

"

$

"

$
"

$

"

$

"

$

" $

"

$
"

$

"$

"

$
"

$

"

$
"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$

"

$"

$

"

$

"

$

"

$"

$"

" FullFuse()

" FullShiftVar(2, 0)

" PartialShiftVal(0, 1)

" SetLoopOpt(0, 3)

"

codeX.c

for (int t=0; t<T; t++) {
for (int i=2; i<N-1; i++)
b[i]=(a[i-1]+a[i]+a[i+1])/3;

for (int j=2; j<N-1; j++)
a[j]=b[j];

}

codeX-vY.c

for(int c0=0; c0<T; c0+=1) {
b[2]=(a[1]+a[2]+a[3])/3;
for(int c1=2*c0+3; c1<N+2*c0 -1; c1+=1) {

b[-2*c0+c1] = (a[-2*c0+c1 -1] + a[-2*c0+c1] +
a[-2*c0+c1 +1])/3;

a[-2*c0+c1 -1] = b[-2*c0+c1 -1];
}

a[N-2] = b[N-2];
}



Auto-Tuning
▶ Brute forcing on a bounded region of the space (grid search)

$

"

$
"$

"
$

"
$

"

$

"

$

"

$

"

$

"

$

"

$" $
"

$

"

$

"

$

"

$
"

$

"

$

"

$

"

$

"

$

"

$

"

$

"
$

"

$

"

$
"

$

"

$

"

$
"

$

"

$

"

$

" $

"

$
"

$

"$

"

$
"

$

"

$
"

$
"

" FullFuse()

" FullShiftVar(2, [0..10])

" PartialShiftVal(0, [1..16])

" Tile([4, 8, 16, 32])



ML opportunities

Different levels of abstraction/representations:
▶ source code [Stein: Paraphrasing etc.]
▶ abstract syntax tree (AST) [Shido: Tree-LSTM etc.]
▶ polyhedral [Baghdadi: Tiramisu]
▶ dependency graphs [Cummins: ProGraML]
▶ intermediate Representations (IR) [Ben-nun: inst2vec]
▶ assembly instructions [Deepmind: Faster sorting]

Three levels of transfer learning

1. No Transfer: Train from scratch for each (SW, HW) pair
2. Transfer to new software
3. Transfer to new hardware

Less retraining, Better exploration ) better results for a given kernel



Speedups: Heuristic, MCTS, GP
for heuristic, Monte Carlo Tree Search, Pluto

1

5

20

80

320

Si
ng

le
-th

re
ad

sp
ee

du
p Pluto

Heuristic
MCTS

2m
m

3m
m adi ata

x
bic

g

cho
les

ky

cor
rel

ati
on

cov
ari

anc
e

der
ich

e

do
itg

en
du

rbi
n

fdt
d-2

d

floy
d-w

ars
hal

l
gem

m
gem

ver

ges
um

mv

gra
msch

midt

hea
t-3

d

jac
ob

i-1
d

jac
ob

i-2
d lu

lud
cm

p
mvt

nu
ssi

no
v

sei
del

-2d
sym

m
syr

2k syr
k

tris
olv trm

m

1

5

20

80

320

M
ul

ti-
th

re
ad

sp
ee

du
p



Overhead breakdown (primitive, 10 seq), Throughput

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rr
el

at
io

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
-w

ar
sh

al
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m
0

20

40

60

80

100

120

Ru
nt

im
e

(s
ec

)

Primitive transformations

Execution time
Compilation
Code generation
Transformation + legality
Extraction

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rr
el

at
io

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
-w

ar
sh

al
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
d

ja
co

bi
-2

d lu
lu

dc
m

p
m

vt
nu

ss
in

ov
se

id
el

-2
d

sy
m

m
sy

r2
k

sy
rk

tri
so

lv
trm

m

0

20

40

60

80

100

120

Ru
nt

im
e

(s
ec

)

10-long transformation sequence

Execution time
Compilation
Code generation
Transformation + legality
Extraction

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rr
el

at
io

n
co

va
ria

nc
e

de
ric

he
do

itg
en

du
rb

in
fd

td
-2

d
flo

yd
-w

ar
sh

al
l

ge
m

m
ge

m
ve

r
ge

su
m

m
v

gr
am

sc
hm

id
t

he
at

-3
d

ja
co

bi
-1

d
ja

co
bi

-2
d lu

lu
dc

m
p

m
vt

nu
ss

in
ov

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tri

so
lv

trm
m

0

20

40

60

80

100

120

140

Ite
ra

tio
ns

pe
rs

ec
on

d

Throughput



Real world applications
▶ miniAMR 5%
▶ Finite-difference time-domain FDTD 13x

Known limitations
▶ C only
▶ SCoP (polyhedral transformations)
▶ PET/ISL
▶ CPU only



Future Works: Fortran

Current backend: PET+ISL



Future Works: Fortran

WIP backend: LLVM+ISL



Roadmap

▶ Codegen: GPU
▶ ML
▶ Beyond polyhedral



That’s all folks!

▶ i. https://vatai.github.io/
▶ ii. https://github.com/vatai/tadashi/
▶ iii. https://arxiv.org/abs/2410.03210

i. ii. iii.

https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210
https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210


Polyhedral model

Components

1. DS = fS[~i] 2 Zn : A~i+ b � 0g

2. �(S[i; j]) = t = (i; j)

3. G = (V;E):
▶ V = fS0; S1; : : :g,
▶ E = fSi[~d] 7! Sj [~r]; : : :g

Mini example

for(int i = 0; i < N; i++)
for(int j = 1; j < M; j++)
A[i, j] += A[i, j-1]; // S[i,j]



𝑖

𝑗

"
a �(S[i; j]) = (i; j)

𝑖

𝑗

"
b �(S[i; j]) = (j; i)

𝑖

𝑗

"
c
�(S[i; j]) = (i+ j; j)

𝑖

𝑗

$
d �(S[i; j]) = (i;�j)

Legality check

S𝐺:

𝑆[𝑖, 𝑗 − 1] ↦→ 𝑆[𝑖, 𝑗]

(𝑖 + 𝑗 − 1, 𝑗 − 1) ↦→ (𝑖 + 𝑗 , 𝑗)

𝜃 (𝑆[𝑖, 𝑗]) = (𝑖 + 𝑗 , 𝑗)

𝛿 = (𝑖 + 𝑗 , 𝑗) − (𝑖 + 𝑗 − 1, 𝑗 − 1)
= (1, 1) >LEX ®0

S𝐺:

𝑆[𝑖, 𝑗 − 1] ↦→ 𝑆[𝑖, 𝑗]

(𝑖,− 𝑗 + 1) ↦→ (𝑖,− 𝑗)

𝜃 (𝑆[𝑖, 𝑗]) = (𝑖,− 𝑗)

𝛿 = (𝑖,− 𝑗) − (𝑖,− 𝑗 + 1)
= (0,−1) ≯LEX ®0



Symbolic representation

{(𝑖, 𝑗) : 1 ≤ 𝑖 ≤ 𝑁 ∧ 1 ≤ 𝑗 ≤ 𝑖}

1 ≤ 𝑖

𝑖 ≤ 𝑁

1 ≤ 𝑗

𝑗 ≤ 𝑖

0 ≤ 𝑖 − 1
0 ≤ 𝑁 − 𝑖

0 ≤ 𝑗 − 1
0 ≤ 𝑖 − 𝑗

𝑁 𝑖 𝑗 const
0 1 0 -1
1 -1 0 0
0 0 1 -1
0 1 -1 0



input.c

0

00

001

0101
𝑆0

𝑆1𝑆2

𝑆3

𝑆
3[
(𝑖,

𝑗)
]↦→

𝑆
0[
(2
𝑖,
2𝑗

+
𝑖)]

𝑆
0 [(𝑖,

𝑗,
.
.
.)]↦→

.
.
.

𝑆
2 [(𝑖, 𝑗 , . . .)] ↦→

. . .

𝑆 2
[(𝑖
, 𝑗
, .
. .
)]
↦→
. .
.

𝑆
0 [(𝑖, 𝑗 , . . .)] ↦→

. . .

output.c

3

4

scop_idx

Transformation

6
Code

generation

Legality check
5

5

Dependency graph 𝐺

tadashi_scop Current node
navigation

Transformed
schedule tree



That’s all folks!

▶ i. https://vatai.github.io/
▶ ii. https://github.com/vatai/tadashi/
▶ iii. https://arxiv.org/abs/2410.03210

i. ii. iii.

https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210
https://vatai.github.io/
https://github.com/vatai/tadashi/
https://arxiv.org/abs/2410.03210

	Intro
	Motivation
	pip install tadashi
	The Long Term Vision
	…and how it's goin'
	Bonus 3 Slide Polyhedral Tutorial

